Volume Growth and Curvature Decay of Positively Curved Kahler Manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume Growth and Curvature Decay of Positively Curved Kähler Manifolds

In this paper we obtain three results concerning the geometry of complete noncompact positively curved Kähler manifolds at infinity. The first one states that the order of volume growth of a complete noncompact Kähler manifold with positive bisectional curvature is at least half of the real dimension (i.e., the complex dimension). The second one states that the curvature of a complete noncompac...

متن کامل

Volume Growth and Curvature Decay of Complete Positively Curved Kähler Manifolds

This paper constructs a class of complete Kähler metrics of positive holomorphic sectional curvature on C and finds that the constructed metrics satisfy the following properties: As the geodesic distance ρ → ∞, the volume of geodesic balls grows like O(ρ 2(β+1)n β+2 ) and the Riemannian scalar curvature decays like O(ρ − 2(β+1) β+2 ), where β ≥ 0.

متن کامل

Manifolds with Quadratic Curvature Decay and Slow Volume Growth

– We show that there are topological obstructions for a noncompact manifold to admit a Riemannian metric with quadratic curvature decay and a volume growth which is slower than that of the Euclidean space of the same dimension.  2000 Éditions scientifiques et médicales Elsevier SAS RÉSUMÉ. – Nous montrons qu’il y a des obstructions topologiques pour qu’une variété non compacte admette une métr...

متن کامل

Manifolds with Quadratic Curvature Decay and Fast Volume Growth

We give sufficient conditions for a noncompact Riemannian manifold, which has quadratic curvature decay, to have finite topological type with ends that are cones over spherical space forms.

متن کامل

Non-negatively Curved Kähler Manifolds with Average Quadratic Curvature Decay

Let (M, g) be a complete non compact Kähler manifold with non-negative and bounded holomorphic bisectional curvature. Extending our techniques developed in [8], we prove that the universal cover M̃ of M is biholomorphic to Cn provided either that (M, g) has average quadratic curvature decay, or M supports an eternal solution to the Kähler-Ricci flow with non-negative and uniformly bounded holomo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Mathematics Quarterly

سال: 2005

ISSN: 1558-8599,1558-8602

DOI: 10.4310/pamq.2005.v1.n1.a4